Acute Responses to Exercise

Respiratory
- Ventilation: How much air is breathed in or out in one minute
- Diffusion: The movement of molecules from an area of higher concentration to one of lower concentration

Cardiovascular
- Cardiac Output: The amount of blood pumped out of the heart in one minute
- Oxygen Consumption: As exercise increases, so does oxygen consumption
- Blood Pressure: Systolic Blood Pressure: Pressure in the arteries following contraction of ventricles as blood is pumped out of the heart
 - Diastolic Blood Pressure: Pressure in the arteries when the heart relaxes and ventricles fill with blood
- Blood Flow: Blood flow is redirected away from the spleen, kidney and other inactive muscles so that these muscles receive the greatest percentage of the cardiac output
- Venous Return: Amount of blood returning to the heart to fill the ventricles
- a-vO2 Difference: Difference in oxygen concentration in the arterioles compared with the venules
- Redistribution of Blood Flow: Blood flow to the heart increases
- Redistribution of Blood Flow: Blood flow to the skin assists in the regulation of body temperature through heat exchange with the environment.
- Redistribution of Blood Flow: During submaximal exercise, blood flow to the skin increases, however during maximal efforts, the skin is redirected away from the skin

Muscular
- Motor Unit Recruitment
- Lactate: Difference in oxygen concentration in the arterioles compared with the venules

Energy Substrates
- ATP: ATP is the immediate source of fuel for all muscular contractions
 - As a result of exercise, ATP stores decrease in the muscle, and stores of ADP, the by product of ATP increase
 - stores of ADP, the by product of ATP increase
- Lactate: As exercise starts, large amounts of oxygen are released from the muscle due to anaerobic production of ATP

Temperature
- Heat is a by product of the process of converting chemical energy (fuel) into mechanical energy (movement)

Motor Unit Recruitment
- The all or nothing principle: A motor unit will either contract maximally or not at all, depending on the strength of the stimulus
- A motor unit is a neuron and the muscle fibres which it stimulates
- It is the means by which the Central Nervous System communicates with the muscles to control muscular contractions

Venous Return
- Increased via: The muscle pump, the respiratory pump and venoconstriction

Oxygen Consumption
- As exercise increases, so does oxygen consumption

a-vO2 Difference
- Difference in oxygen concentration in the arterioles compared with the venules

Cardiac Output
- Q = SV x HR

Blood Pressure
- An increase in cardiac output results in an increase of blood pressure
- Exercise using large muscle groups affect systolic blood pressure more than diastolic blood pressure

Oxygen Consumption
- As exercise increases, so does oxygen consumption
- Stores of ADP, the by product of ATP increase
- When exercise intensity increases, there is an increase in the rate of metabolism required to produce ATP in the muscles

Redistribution of Blood Flow
- Blood flow to the heart increases
- Blood flow to the skin assists in the regulation of body temperature through heat exchange with the environment.
- During submaximal exercise, blood flow to the skin increases, however during maximal efforts, the skin is redirected away from the skin